29 research outputs found

    Effects of the electronic threshold on the performance of the RPC system of the CMS experiment

    Get PDF
    Resistive Plate Chambers have a very important role for muon triggering both in the barrel and in the endcap regions of the CMS experiment at the Large Hadron Collider (LHC). In order to optimize their performance, it is of primary importance to tune the electronic threshold of the front-end boards reading the signals from these detectors. In this paper we present the results of a study aimed to evaluate the effects on the RPC efficiency, cluster size and detector intrinsic noise rate, of variations of the electronics threshold voltage

    Machine Learning based tool for CMS RPC currents quality monitoring

    Full text link
    The muon system of the CERN Compact Muon Solenoid (CMS) experiment includes more than a thousand Resistive Plate Chambers (RPC). They are gaseous detectors operated in the hostile environment of the CMS underground cavern on the Large Hadron Collider where pp luminosities of up to 2×10342\times 10^{34} cm−2s−1\text{cm}^{-2}\text{s}^{-1} are routinely achieved. The CMS RPC system performance is constantly monitored and the detector is regularly maintained to ensure stable operation. The main monitorable characteristics are dark current, efficiency for muon detection, noise rate etc. Herein we describe an automated tool for CMS RPC current monitoring which uses Machine Learning techniques. We further elaborate on the dedicated generalized linear model proposed already and add autoencoder models for self-consistent predictions as well as hybrid models to allow for RPC current predictions in a distant future

    Front-end electronics for CMS iRPC detectors

    No full text
    A new generation of resistive plate chambers, capable of withstanding high particle fluxes (up to 2000 Hz . cm(-2)) and instrumented with precise timing readout electronics is proposed to equip two of the four high pseudorapidity stations of the CMS muon system. Double-gap RPC detectors, with each gap made of two 1.4mm High Pressure Laminate electrodes and separated by a gas gap of the same thickness, are proposed. The new layout reduces the amount of the avalanche charge produced by the passage of a charged particle through the detector. This improves the RPC rate capability by reducing the needed time to collect this charge. To keep the RPC efficiency high, a sensitive, low-noise and high time resolution front-end electronics is needed to cope with the lower charge signal of the new RPC. An ASIC called PETIROC that has all these characteristics has been selected to read out the strips of new chambers. Thin (0.6mm) printed circuit board, 160 cm long, equipped with pickup strips of 0.75 cm average pitch, will be inserted between the two new RPC's gaps. The strips will be read out from both ends, and the arrival time difference of the two ends will be used to determine the hit position along the strip. Results from the improved RPC equipped with the new readout system and exposed to cosmic muons in the high irradiation environment at CERN GIF++ facility are presented in this work

    Experiences from the RPC data taking during the CMS RUN-2

    Get PDF
    International audienceThe CMS experiment recorded 177.75 fb−1 of proton-proton collision data during the RUN-1 and RUN-2 data taking period. Successful data taking at increasing instantaneous luminosities with the evolving detector configuration was a big achievement of the collaboration. The CMS RPC system provided redundant information for the robust muon triggering, reconstruction, and identification. To ensure stable data taking, the CMS RPC collaboration has performed detector operation, calibration, and performance studies. Various software and related tools are developed and maintained accordingly. In this paper, the overall performance of the CMS RPC system and experiences of the data taking during the RUN-2 period are summarised

    Improved-RPC for the CMS muon system upgrade for the HL-LHC

    Get PDF
    International audienceDuring Phase-2 of the LHC, known as the High Luminosity LHC (HL-LHC), the accelerator will increase its instantaneous luminosity to 5 × 1034 cm−2 s−1, delivering an integrated luminosity of 3000 fb−1 over 10 years of operation starting from 2027. In view of the HL-LHC, the CMS muon system will be upgraded to sustain efficient muon triggering and reconstruction performance. Resistive Plate Chambers (RPCs) serve as dedicated detectors for muon triggering due to their excellent timing resolution, and will extend the acceptance up to pseudorapidity values of |η|=2.4. Before Long Shutdown 3 (LS3), the RE3/1 and RE4/1 stations of the endcap will be equipped with new improved Resistive Plate Chambers (iRPCs) having different design and geometry than the present RPC system. The iRPC geometry configuration improves the detector's rate capability and its ability to survive the harsh background conditions of the HL-LHC . Also, new electronics with excellent timing performances (time resolution of less than 150 ps) are developed to read out the RPC detectors from both sides of the strips to allow for good spatial resolution along them. The performance of the iRPC has been studied with gamma radiation at the Gamma Irradiation Facility (GIF++) at CERN. Ongoing longevity studies will help to certify the iRPCs for the HL-LHC running period. The main detector parameters such as the current, rate and resistivity are regularly monitored as a function of the integrated charge. Preliminary results of the detector performance will be presented

    A new approach for CMS RPC current monitoring using Machine Learning techniques

    Get PDF
    International audienceThe CMS experiment has 1054 RPCs in its muon system. Monitoring their currents is the first essential step towards maintaining the stability of the CMS RPC detector performance. The current depends on several parameters such as applied voltage, luminosity, environmental conditions, etc. Knowing the influence of these parameters on the RPC current is essential for the correct interpretation of its instabilities as they can be caused either by changes in external conditions or by malfunctioning of the detector in the ideal case. We propose a Machine Learning(ML) based approach to be used for monitoring the CMS RPC currents. The approach is crucial for the development of an automated monitoring system capable of warning for possible hardware problems at a very early stage, which will contribute further to the stable operation of the CMS RPC detector

    Front-end electronics for CMS iRPC detectors

    No full text
    International audienceA new generation of resistive plate chambers, capable of withstanding high particle fluxes (up to 2000 Hz · cm-2) and instrumented with precise timing readout electronics is proposed to equip two of the four high pseudorapidity stations of the CMS muon system. Double-gap RPC detectors, with each gap made of two 1.4 mm High Pressure Laminate electrodes and separated by a gas gap of the same thickness, are proposed. The new layout reduces the amount of the avalanche charge produced by the passage of a charged particle through the detector. This improves the RPC rate capability by reducing the needed time to collect this charge. To keep the RPC efficiency high, a sensitive, low-noise and high time resolution front-end electronics is needed to cope with the lower charge signal of the new RPC. An ASIC called PETIROC that has all these characteristics has been selected to read out the strips of new chambers. Thin (0.6 mm) printed circuit board, 160 cm long, equipped with pickup strips of 0.75 cm average pitch, will be inserted between the two new RPC's gaps. The strips will be read out from both ends, and the arrival time difference of the two ends will be used to determine the hit position along the strip. Results from the improved RPC equipped with the new readout system and exposed to cosmic muons in the high irradiation environment at CERN GIF++ facility are presented in this work

    Upgrade of the CMS resistive plate chambers for the high luminosity LHC

    No full text
    International audienceDuring the upcoming High Luminosity phase of the Large Hadron Collider (HL-LHC), the integrated luminosity of the accelerator will increase to 3000 fb−1^{−1}. The expected experimental conditions in that period in terms of background rates, event pileup, and the probable aging of the current detectors present a challenge for all the existing experiments at the LHC, including the Compact Muon Solenoid (CMS) experiment. To ensure a highly performing muon system for this period, several upgrades of the Resistive Plate Chamber (RPC) system of the CMS are currently being implemented. These include the replacement of the readout system for the present system, and the installation of two new RPC stations with improved chamber and front-end electronics designs. The current overall status of this CMS RPC upgrade project is presented

    Aging Study on Resistive Plate Chambers of the CMS Muon Detector for HL-LHC

    Get PDF
    International audienceIn the High Luminosity Large Hadron Collider (HL-LHC) program, during the next years, the instantaneous luminosity will increase up to 5 × 1034 cm−2 s−1 which means a factor five higher than the nominal LHC luminosity. In that period, the present CMS Resistive Plate Chambers (RPC) system will be subjected to background rates higher than those for which the detectors have been designed, which could affect the detector properties and induce aging effects. To study whether the present RPC system can sustain the hard background conditions during the HL-LHC running period, a dedicated longevity test is ongoing at the CERN Gamma Irradiation Facility, where a few spare RPCs are exposed to high gamma radiation for a long term period to mimic the HL-LHC operational conditions. During the longevity test, the main detector parameters are continuously monitored as a function of the integrated charge. Preliminary results of the study, after having collected a sufficient amount of the expected integrated charge at HL-LHC, will be presented
    corecore